Acta Cryst. (1999). C55, 1515-1517

Two tetramethylxanthenediones

J. Jeyakanthan, ${ }^{a}$ S. Shanmuga Sundara Raj, ${ }^{b}$ D. Velmurugan, ${ }^{a}$ Hoong-Kun Fun ${ }^{b}$ and P. Murugan ${ }^{c}$
${ }^{a}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{b}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ' Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. E-mail: crystal@giasmd01.vsnl.net.in

(Received 7 September 1998; accepted 6 May 1999)

Abstract

In both title compounds, 1,2,3,4,5,6,7,8-octahydro-3,3,6,6-tetramethylxanthene-1,8-dione, $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$, (I), and 1,2,3,4,5,6,7,8-octahydro-3,3,6,6-tetramethyl-9-(2-nitrophenyl)xanthene-1,8-dione, $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{5}$, (II), the central ring of the xanthene moiety is planar and the two outer rings are in sofa conformations. Due to π conjugation, there is an electron delocalization stretch. The phenyl ring of the 2 -nitrophenyl substituent in (II) is nearly perpendicular [89.52(7) ${ }^{\circ}$] to the xanthene ring system.

Comment

Efonidipine (NZ-105), a potent antihypertensive agent, has been shown to reduce blood pressure gradually in dogs, with long lasting action, and it has afforded excellent results in clinical studies (Sakoda et al., 1993; Bahr et al., 1997). 1,2,3,4,5,6,7,8-Octahydro-3,3,6,6-tetramethyl-9-(2-nitrophenyl)xanthene-1,8-dione (Murugan \& Ramakrishnan, 1997), (II), is an analogue of NZ-105, while 1,2,3,4,5,6,7,8-octahydro-3,3,6,6-tetra-methylxanthene-1,8-dione, (I), is a similar compound with fewer substituents. The structures of (I) and (II) are described here.

(I)

(II)

The xanthene moiety is folded along the C9..O10 axis in both (I) and (II), and the mean planes of
the two halves ($\mathrm{Cl} / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 4 \mathrm{a} / \mathrm{Cla} / \mathrm{O} 10 / \mathrm{C} 9$ and $\mathrm{C} 5 \mathrm{a} / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 8 / \mathrm{O} 10 / \mathrm{C} 9$) make dihedral angles of 4.61 (3) ${ }^{\circ}$ in (I) and $3.79(6)^{\circ}$ in (II). The $\mathrm{C} 4=\mathrm{Ol}$ and $\mathrm{C} 5=\mathrm{O} 2$ carbonyl groups have bond lengths of 1.217 (2) and 1.219 (2) \AA in (I), and 1.230 (2) and 1.222 (2) \AA in (II), in agreement with a previous report by Brito-Arias et al. (1996). The C8a-O10-Cla angles [118.3(1) ${ }^{\circ}$ in (I) and $117.8(2)^{\circ}$ in (II)] show the $s p^{2}$ hybridized behaviour of O10. In both compounds, the central ring is planar. The $s p^{2}$ nature of the O atom causes it to resonate strongly with the ring and the lone pair on the O atom may be involved in electron delocalizations. This conjecture is confirmed by the partial double bonds along $\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 4 \mathrm{a}-\mathrm{Cla}-\mathrm{O} 10-\mathrm{C} 8 \mathrm{a}-\mathrm{C} 5 \mathrm{a}-\mathrm{C} 5-\mathrm{O} 2$.

The dihedral angle between rings A (atoms $\mathrm{C} 1-\mathrm{C} 4$, Cla and C 4 a) and C (atoms C5-C8, C5a and C8a) is $11.83(4)^{\circ}$ in (I) and $8.31(7)^{\circ}$ in (II). The methyl groups at $\mathrm{C} 2(\mathrm{C} 11$ and C 12$)$ are in axial and equatorial positions [deviations from the six-atom ring are -1.818 (2) and 0.250 (2) \AA, respectively, in (I) and -1.858 (4) and

Fig. 1. ORTEPIII (Johnson \& Burnett, 1997) diagram of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.

Fig. 2. ORTEPIII (Johnson \& Burnett, 1997) diagram of (II) showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
0.149 (3) \AA, respectively, in (II)], and those at C 7 (Ci3 and (14) are also in axial and equatorial positions [deviations from the six-atom ring are -1.821 (2) and 0.252 (2) \AA, respectively, in (I) and -1.857 (3) and 0.153 (3) \AA, respectively, in (II)]. Similar deviations of the two methyl groups are reported by Sivaraman et al. (1996). In both compounds, the axial methyl groups at C2 and C7 are nearly parallel to each other.
The sofa conformations of the two outer rings, A and C, are confirmed by the puckering amplitudes (Cremer \& Pople, 1975): $Q_{T}=0.462$ (2) and 0.443 (1) \AA for rings A and C, respectively, in (I) and 0.496 (3) and 0.475 (3) \AA for rings A and C, respectively, in (II). In ring A, atom $C 2$ deviates from the mean plane of the ring by -0.294 (2) \AA in (I) and by -0.331 (3) \AA in (II), while in ring C, atom C 7 deviates from the mean plane of the ring by -0.292 (1) \AA in (I) and by -0.331 (3) \AA in (II). The mean of the ring bond lengths involving the C9 atom is 1.497 (3) \AA in (I) and 1.510 (3) \AA in (II) [1.507 (7) \AA in xanthene-9-carboxylic acid (Blackburn et al., 1996)], while the mean of the ring bond lengths involving O 10 is 1.380 (3) \AA in (I) and 1.377 (3) \AA in (II) [1.377 (6) \AA in xanthene-9-carboxylic acid (Blackburn et al., 1996)]. The C4a-C9-C5a central ring angle is $110.51(1)^{\circ}$ in (I) and $109.6(2)^{\circ}$ in (II) [111.5 (3) ${ }^{\circ}$ in xanthene-9-carboxylic acid (Blackburn et al., 1996)] and the $\mathrm{Cla}-\mathrm{OlO}-\mathrm{C} 8$ a central ring angle is $118.3(1)^{\circ}$ in (I) and 117.8 (2) ${ }^{\circ}$ in (II) [118.5 (3) ${ }^{\circ}$ in xanthene-9carboxylic acid (Blackburn et al., 1996)].
The planar phenyl ring of the 2 -nitrophenyl substituent in compound (II) is almost perpendicular to the central ring, with the dihedral angle between their leastsquares planes being $89.52(7)^{\circ}$ and the mean $C s p^{2}-$ $\mathrm{C} s p^{2}$ bond length within this ring being 1.382 (8) \AA. These values are comparable to the values found in the literature (Miao et al., 1996; Brito-Arias et al., 1996). The $\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 4$ plane is tilted out of the plane of the phenyl ring by an angle of $31.4(2)^{\circ}$.

Experimental

Compound (I) was synthesized by the condensation of dimedone (5,5 -dimethylcyclohexane-1,3-dione) with formaldehyde followed by refluxing in acetic anhydride. Compound (II) was synthesized by the condensation of dimedone with o-nitrobenzaldehyde to give $2,2^{\prime}$-(o-nitrobenzylidene)bis(dimedone), followed by refluxing with acetic anhydride. After concentration, the crystallized materials were filtered and dried to isolate the products. Both compounds were recrystallized from ethanol by slow evaporation (Murugan \& Ramakrishnan, 1997).

Compound (I)

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$
$M_{r}=274.35$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

Triclinic
$P \overline{1}$
$a=7.1458$ (8) \AA
$b=9.7690(12) \AA$
$c=11.886(2) \AA$
$\alpha=110.784(10)^{\circ}$
$\beta=96.074(11)^{\circ}$
$\gamma=101.302(10)^{\circ}$
$V=746.6(2) \AA^{3}$
$Z=2$
$D_{x}=1.220 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
4130 measured reflections
3333 independent reflections 2301 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.030$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.139$
$S=0.994$
3331 reflections
186 parameters
H atoms constrained
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0772 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

Cell parameters from 27
reflections
$\theta=9.07-24.84^{\circ}$
$\mu=0.082 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular block
$0.64 \times 0.28 \times 0.24 \mathrm{~mm}$ Colourless
$\theta_{\text {max }}=27.5^{\circ}$
$h=-1 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 15$
3 standard reflections every 97 reflections intensity decay: $<2 \%$

Table 1. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I)

$\mathrm{OI}-\mathrm{C4}$	1.217 (2)	C4a-C9	1.497 (2)
O2-C5	1.219 (2)	C5-C5a	1.467 (2)
Cla-C4a	1.338 (2)	C5a-C8a	1.340 (2)
Cla-Ol0	1.3802 (15)	C5a-C9	1.497 (2)
C4-C4a	1.467 (2)	C8a-010	1.3786 (15)
C4a-C1a-O10	122.81 (11)	C14-C7-C13	109.28 (12)
$\mathrm{C} 4 \mathrm{a}-\mathrm{Cla}-\mathrm{Cl}$	126.18(12)	C4a-C9-C5a	110.51 (11)
C12-C2-C11	109.40 (13)	C8a-O10-Cla	118.27 (10)

Compound (II)

Crystal data
$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{5}$
Mo $K \alpha$ radiation
$M_{r}=395.44$
Monoclinic
C2/c
$a=26.581$ (2) \AA
$b=10.094$ (1) \AA
$c=19.624(2) \AA$
$\beta=128.75(1)^{\circ}$
$V=4106.3(7) \AA^{3}$
$Z=8$
$D_{x}=1.279 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$
Extinction correction: SHELXTL (Siemens, 1996)

Extinction coefficient: 0.011 (5)

Scattering factors from International Tables for Crystallography (Vol. C)
$\lambda=0.71073 \mathrm{~A}$
Cell parameters from 39
reflections
$\theta=5.36-11.02^{\circ}$
$\mu=0.090 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular block
$0.42 \times 0.32 \times 0.28 \mathrm{~mm}$
Yellow

Data collection

Siemens $P 4$ diffractometer	$\theta_{\max }=27.5^{\circ}$
$\theta / 2 \theta$ scans	$h=-1 \rightarrow 34$
Absorption correction: none	$k=-1 \rightarrow 13$
5589 measured reflections	$l=-25 \rightarrow 20$
4711 independent reflections	3 standard reflections
1670 reflections with	every 97 reflections
$I>2 \sigma(I)$	intensity decay: $<3 \%$

$R_{\text {int }}=0.044$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.107$
$S=0.740$
4711 reflections
262 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0318 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Miao, F.-M., Zhang, L.-J., Wen, X., Zhou, W.-H., Niu, Z.-C., Han, J.-G. \& Liu, X.-L. (1996). Acta Cryst. C52, 700-702.

Murugan, P. \& Ramakrishnan, V. T. (1997). Indian J. Heterocycl. Chem. 7, 153-154.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sakoda, R., Matsumoto, H. \& Seto, K. (1993). Synthesis, pp. 705-713.
Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. \& Shanmugasundram, P. S. (1996). Acta Cryst. C52, 481-483.

Acta Cryst. (1999). C55, 1517-1519

Bis[4-(2-methoxycarbonyl-5-thienyl)]phenyl ether \dagger

S. Shanmuga Sundara Raj, ${ }^{a}$ Hoong-Kun Fun, ${ }^{a}$ Susmita Gupta ${ }^{b}$ and Jayanta Kumar Ray ${ }^{b}$
${ }^{a}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and
${ }^{b}$ Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India. E-mail: hkfun@usm.my
(Received 4 May 1999; accepted Il June 1999)

Abstract

The title compound, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}_{2}$, possesses crystallographic C_{2} symmetry. The thienyl ring adopts a planar conformation. The methoxycarbonyl group is twisted $9.7(1)^{\circ}$ out of plane of its parent thienyl ring.

Comment

The synthesis of non-natural cavity-shaped molecules has invaded the field of molecular recognition in recent years (Haldar et al., 1997). The focus on heterocyclic compounds has generated novel receptors which are capable of binding suitable guests through hydrogen bonding, π-stacking forces and van der Waals interactions. This has further enriched the field of supramolecular chemistry. In connection with our studies towards the synthesis of novel cavity-shaped receptors for the selective recognition of long-chain dicarboxylic acids, we have synthesized some bis-thiophene-5-carboxamide derivatives (Gupta et al., 1999) where the diphenyl ether moiety has been used as a spacer between the two thiophene units.

The title compound, (I), is the precursor of our designed artificial receptor. In this cavity-shaped molecule,

[^0]
[^0]: \dagger Alternative name: dimethyl 5.5^{\prime}-(oxydi-p-phenylene)bis(thiophene-
 2-carboxylate).

